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A Posterior derivations

This not-for-publication appendix explains how we obtain parameter estimates for the

models described in Section 2 of the paper, and shows how we use these to generate

predictive densities.

A.1 Linear models

For the linear models the goal is to obtain draws from the joint posterior distribution

p (µ,β, σ−2ε | Y t), where Y t denotes all information available up to time t. Combining the

priors in equations (2)-(4) of the paper with the likelihood function yields the following

conditional posteriors: [
µ
β

]∣∣∣∣σ−2ε ,Y t ∼ N
(
b,V

)
, (A-1)

and

σ−2ε
∣∣µ,β,Y t ∼ G (s−2, v) , (A-2)
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where

V =

[
V−1 + σ−2ε

t−1∑
τ=1

xτx
′

τ

]−1
,

b = V

[
V−1b + σ−2ε

t−1∑
τ=1

xτyτ+1

]
, (A-3)

v = v0 (t0 − 1) + (t− 1) .

and

s2 =

∑t−1
τ=1 (yτ+1 − µ− β′xτ )

2
+
(
s2y,t0 × v0 (t0 − 1)

)
v

. (A-4)

A Gibbs sampler algorithm can be used to iterate back and forth between (A-1) and

(A-2), yielding a series of draws for the parameter vector (µ,β, σ−2ε ). Draws from the

predictive density p (yt+1| Y t) can then be obtained by noting that

p
(
yt+1| Y t

)
=

∫
p
(
yt+1|µ,β, σ−2ε ,Y t

)
p
(
µ,β, σ−2ε

∣∣Y t) dµdβdσ−2ε . (A-5)

Draws from p (yt+1| Y t) are obtained in two steps:

1. Draw µ, β, and σ−2ε from p (µ,β, σ−2ε | Y t) using the Gibbs sampler described above

2. Given µ, β, and σ−2ε , draw

yt+1|µ,β, σ−2ε ,Y t ∼ N
(
µ+ β′xτ , σ

2
ε

)
(A-6)

A.2 Time-varying Parameter, Stochastic Volatility Models

Let θt be the time varying parameters, θt = (µt,β
′
t), while θt = {θ1, ...,θt} and ht =

{h1, ..., ht} are the sequences of time-varying mean and log-volatility parameters up to

time t. Finally, let Θ =
(
µ,β,Q,σ−2ξ ,γθ, λ0, λ1

)
be the time-invariant parameters of the

TVP-SV model.

To obtain draws from the joint posterior distribution p
(

Θ,θt, ht
∣∣Y t) for the TVP-

SV model, we use the Gibbs sampler to draw recursively from the following conditional

distributions:1

1. p
(
θt
∣∣Θ, ht,Y t)

2. p
(
µ,β|Θ−µ,β,θt, ht,Y t

)
3. p

(
Q|Θ−Q,θt, ht,Y t

)
1In standard set notation A−b is the complementary set of b in A, i.e., A−b = {x ∈ A : x 6= b}.
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4. p
(
ht|Θ,θt,Y t

)
5. p

(
σ−2ξ
∣∣Θ−σ−2

ξ
,θt, ht,Y t

)
6. p

(
γθ|Θ−γθ

,θt, ht,Y t
)

7. p
(
λ0, λ1|Θ−λ0,λ1 ,θt, ht,Y t

)
We simulate from each of these blocks as follows. Starting with θt, we focus on

p
(
θt
∣∣Θ,ht,Y t). First, define ỹτ+1 = yτ+1 − µ − β′xτ and rewrite equation (6) in the

paper as follows:

ỹτ+1 = µτ+1 + β′τ+1xτ + exp (hτ+1)uτ+1. (A-7)

Given a set of values for µ and β, ỹτ+1 is observable. This reduces (A-7) to the mea-

surement equation of a standard linear Gaussian state space model with heteroskedastic

errors. Thus the sequence of time varying parameters θt can be drawn from (A-7) using

the algorithm of Carter and Kohn (1994).

Second, conditional on θt we can draw µ,β from standard distributions for p
(
µ,β|Θ−µ,β,θt, ht,Y t

)
:[

µ
β

]∣∣∣∣Θ−µ,β,θt, ht,Y t ∼ N
(
b,V

)
, (A-8)

where

V =

[
V−1 +

t−1∑
τ=1

1

exp (hτ+1)
2xτx

′
τ

]−1
,

b = V

[
V−1b +

t−1∑
τ=1

1

exp (hτ+1)
2xτ

(
yτ+1 − µτ+1 − β′τ+1xτ

)]
. (A-9)

Third, note that

Q|Θ−Q, θt, ht,M ′
i ,Y t ∼ IW

(
Q, vQ

)
, (A-10)

where

Q = Q +
t−1∑
τ=1

(θτ+1 − γ ′θθτ ) (θτ+1 − γ ′θθτ )
′
. (A-11)

and vQ = (t− 1)+vQ (t0 − 1). Fourth, define y∗τ+1 = yτ+1−(µ+ µτ+1)−
(
β + βτ+1

)′
xτ

and note that y∗τ+1 is observable conditional on µ, β, and θt. Next, rewrite equation (6)

in the paper as

y∗τ+1 = exp (hτ+1)uτ+1. (A-12)
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Squaring and taking logs on both sides of (A-12) yields a new state space system that

replaces equations (6)-(8) in the paper with

y∗∗τ+1 = 2hτ+1 + u∗∗τ+1, (A-13)

hτ+1 = λ0 + λ1hτ + ξτ+1, (A-14)

where y∗∗τ+1 = ln
[(
y∗τ+1

)2]
, and u∗∗τ+1 = ln

(
u2τ+1

)
∼ ln (χ2

1) , with u∗∗τ independent of ξs

for all τ and s. Kim et al. (1998) employ a data augmentation approach and introduce a

new state variable sτ , τ = 1, .., t, turning their focus on drawing from p
(
ht|Θ,θt, st,Y t

)
instead of p

(
ht|Θ,θt,Y t

)
.2 Conditional on the additional state variable sτ , the linear non-

Gaussian state space representation in (A-13)-(A-14) can be written as an approximate

linear Gaussian state space model:

u∗∗τ+1 ≈
7∑
j=1

qjN
(
mj − 1.2704, v2j

)
, (A-15)

where mj, v
2
j , and qj, j = 1, 2, ..., 7, are constants specified in Kim et al. (1998). In turn,

(A-15) implies

u∗∗τ+1

∣∣ sτ+1 = j ∼ N
(
mj − 1.2704, v2j

)
, (A-16)

where qj = Pr (sτ+1 = j) is the probability of state j.

Conditional on st, we can rewrite the nonlinear state space system as follows:

y∗∗τ+1 = 2hτ+1 + eτ+1,

hτ+1 = λ0 + λ1hτ + ξτ+1, (A-17)

where eτ+1 ∼ N
(
mj − 1.2704, v2j

)
with probability qj. We can use the algorithm of Carter

and Kohn (1994) to draw the whole sequence of stochastic volatilities, ht, for this linear

Gaussian state space system.

Conditional on the sequence ht, draws of states st can easily be obtained, noting that

each of its elements can be independently drawn from the discrete density defined by

Pr
(
sτ+1 = j| y∗∗τ+1, hτ+1

)
=

qjfN
(
y∗∗τ+1

∣∣ 2hτ+1 +mj − 1.2704, v2j
)∑7

l=1 qlfN
(
y∗∗τ+1

∣∣ 2hτ+1 +ml − 1.2704, v2l
) . (A-18)

for τ = 1, ..., t− 1 and j = 1, ..., 7, and where fN denotes the kernel of a normal density.

Fifth, the posterior distribution for p
(
σ−2ξ
∣∣Θ−σ−2

ξ
,θt, ht,Y t

)
takes the form

σ−2ξ
∣∣Θ−σ−2

ξ
,θt, ht,Y t ∼ G

[∑t−1
τ=1 (hτ+1 − λ0 − λ1hτ )2 + kξvξ (t− 1)

(t− 1) + vξ (t0 − 1)

]−1
, (t− 1) + vξ (t0 − 1)

 .

(A-19)

2Here st = {s1, s2, ..., st} denotes the history up to time t of the new state variable s.
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Sixth, obtaining draws from p
(
γθ|Θ−γθ

,θt, ht,Y t
)

and p
(
λ0, λ1|Θ−λ0,λ1 ,θt, ht,Y t

)
is

straightforward. As for p
(
γθ|Θ−γθ

,θt, ht,Y t
)
, we separately draw each of its elements.

The i−th element γiθ is drawn from the following distribution

γiθ
∣∣Θ−γθ

,θt, ht,Y t ∼ N
(
mi
γθ
, V

i

γθ

)
× γiθ ∈ (−1, 1) (A-20)

where

V
i

γθ
=

[
V −1γθ + Qii

t−1∑
τ=1

(
θiτ
)2]−1

,

mi
γθ

= V
i

γθ

[
V −1γθ mγθ

+ Qii

t−1∑
τ=1

θiτθ
i
τ+1

]
, (A-21)

and Qii is the i−th diagonal element of Q−1.

Finally, the distribution p
(
λ0, λ1|Θ−λ0,λ1 ,θt, ht,Y t

)
takes the form

λ0, λ1|Θ−λ0,λ1 ,θt, ht,Y t ∼ N
([

mλ0

mλ1

]
,Vλ

)
× λ1 ∈ (−1, 1) ,

where

Vλ =

{[
V −1λ0 0

0 V −1λ1

]
+ σ−2ξ

t−1∑
τ=1

[
1
hτ

]
[1, hτ ]

}−1
, (A-22)

and [
mλ0

mλ1

]
= Vλ

{[
V −1λ0 0

0 V −1λ1

] [
mλ0

mλ1

]
+ σ−2ξ

t−1∑
τ=1

[
1
hτ

]
hτ+1

}
. (A-23)

Using these results, draws from the predictive density p (yt+1| Y t) can be obtained by

noting than

p
(
yt+1| Y t

)
=

∫
p
(
yt+1|θt+1, ht+1,Θ,θ

t, ht,Y t
)
× p

(
θt+1, ht+1|Θ,θt, ht,Y t

)
(A-24)

×p
(

Θ,θt, ht
∣∣Y t) dΘdθt+1dht+1.

Draws from p (yt+1| Y t) are obtained in three steps:

1. Draw from p
(

Θ,θt, ht
∣∣Y t) using the above Gibbs sampling algorithm;

2. Simulate the future volatility, ht+1, and the future regression coefficients, θt+1 from

the distributions

ht+1|Θ,θt, ht,Y t ∼ N
(
λ0 + λ1ht, σ

2
ξ

)
. (A-25)

and

θt+1|Θ,θt, ht,Y t ∼ N (γ ′θθt,Q) . (A-26)
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3. Finally, given θt+1, ht+1,Θ, Y t draw

yt+1|θt+1, ht+1,Θ,θ
t, ht,Y t ∼ N

(
(µ+ µt+1) +

(
β + βt+1

)′
xt, exp (ht+1)

)
.

(A-27)

A.3 MS Models

To obtain draws from the joint posterior distribution p (st,Ξ,P| Y t) under the MS model,

we use the Gibbs sampler to draw recursively from the following three conditional distri-

butions:

1. p (st|Ξ,P,Y t)

2. p (Ξ| st,P,Y t)

3. p (P| st,Ξ,Y t)

We simulate from each of these blocks as follows. We follow Chib (1996) and rely on

a multi-move sampler for the path of hidden states, st. We first rewrite p (st|Ξ,P,Y t) as

p
(
st
∣∣Ξ,P,Y t) =

[
t−1∏
τ=1

p
(
sτ | sτ+1, ..., st,Ξ,P,Y t

)]
p
(
st|Ξ,P,Y t

)
. (A-28)

p (st|Ξ,P,Y t) is the filtered probability distribution at τ = t. Chib (1996) shows that

p
(
sτ | sτ+1, ..., st,Ξ,P,Y t

)
∝ p (sτ+1| sτ ,P)× p (sτ |Ξ,P,Yτ ) , (A-29)

where p (sτ |Ξ,P,Yτ ) is the filtered probability distribution at τ, and p (sτ+1| sτ ,P) is the

transition probability from the Markov chain. Thus, to sample from p (st|Ξ,P,Y t) , we

first need to compute the sequence of filtered probability distributions {p (sτ |Ξ,P,Yτ )}tτ=1,

which can be obtained by recursively iterating through the following two steps for τ =

1, 2, ..., t:

p
(
sτ = l|Ξ,P,Yτ−1

)
=

K∑
k=1

p (sτ = l| sτ−1 = k,P) p
(
sτ−1 = k|Ξ,P,Yτ−1

)
, (A-30)

and, for l = 1, ..., K,

p (sτ = l|Ξ,P,Yτ ) =
p (yτ | sτ = l,Ξ,P,Yτ−1) p (sτ = l|Ξ,P,Yτ−1)∑K
k=1 p (yτ | sτ = k,Ξ,P,Yτ−1) p (sτ = k|Ξ,P,Yτ−1)

. (A-31)

At τ = 1 the filter is started with the initial distribution p (s0|P) , which we set equal to

the steady state probabilities. Once the sequence of filtered probabilities {p (sτ |Ξ,P,Yτ )}tτ=1
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is available, we proceed as follows. First, we sample st from the filtered state probabil-

ity distribution p (st|Ξ,P,Y t) . Next, for τ = t − 1, t − 2, ..., 1 we sample sτ from the

conditional distribution p (sτ = l| sτ+1, ..., st,Ξ,P,Y t)

p
(
sτ = l| sτ+1, ..., st,Ξ,P,Y t

)
=

p (sτ+1 = lm| sτ = l,P) p (sτ = l|Ξ,P,Yτ )∑K
k=1 p (sτ+1 = lm| sτ = k,P) p (sτ = k|Ξ,P,Yτ )

(A-32)

where lm is the state drawn in the previous step of the recursion for sτ+1. Note that

for each τ = t− 1, t− 2, ..., 1, p (sτ = l| sτ+1, ..., st,Ξ,P,Y t) needs to be evaluated for all

l = 1, .., K.

The state-specific parameters θ1, ...,θK , σ
−2
1 , ..., σ−2K are independent a posteriori and

are drawn from the following distributions

θi|σ−2i , st,P,Y t ∼ N
(
bi,Vi

)
, (A-33)

and

σ−2i
∣∣θi, st,P,Y t ∼ G (s−2i , vi

)
, (A-34)

where

Vi =

[
V−1 + σ−2i

∑
τ :sτ=i

xτx
′

τ

]−1
,

bi = Vi

[
V−1b + σ−2i

∑
τ :sτ=i

xτyτ+1

]
, (A-35)

and

vi = v0 + ni,

s2i =

∑
τ :sτ=i

(yτ+1 − µi − β′ixτ )
2

+
(
s2y,t0 × v0ni

)
vi

, (A-36)

where ni = # (sτ = i) counts the number of observations from regime i along the path

of hidden states st. To cope with the label switching problem that arises with Markov

switching models, we identify different regimes by imposing the following constraint on

the regime-specific volatilities: σ2
1 < σ2

2 < ... < σ2
K .

Next, we draw the elements of the transition probability matrix P from p (P| st,Ξ,Y t).
Because the rows pi,. of P are independent a posteriori, we draw each row separately from

the following Dirichlet distribution:

pi,.| st,Ξ,Y t ∼ D (ei1 + ni1, ..., eiK + niK) , i = 1, ..., K (A-37)
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where nij = # (sτ−1 = i, sτ = j) counts the numbers of transitions from i to j as given by

the whole path of hidden states st.

Finally, draws from the predictive density p (yt+1| Y t) can be obtained by noting than

p
(
yt+1| Y t

)
=

∫
p
(
yt+1| st+1, s

t,Ξ,P,Y t
)
× p

(
st+1| st,Ξ,P,Y t

)
(A-38)

×p
(
st,Ξ,P

∣∣Y t) dst+1dΞdP.

To draw from p (yt+1| Y t), we proceed in three steps:

1. Draw from p (st,Ξ,P| Y t) using the above Gibbs sampling algorithm;

2. Simulate the time t+1 hidden state variable, st+1 by drawing from p (st+1| st,Ξ,P,Y t).
Note that p (st+1| st,Ξ,P,Y t) equals the j−th row of P, pj,., if st = j;

3. Draw from p (yt+1| st+1, s
t,Ξ,P,Y t) using the distribution

yt+1| st+1, s
t,Ξ,P,Y t ∼ N

(
µst+1 + β′st+1

xt, σ
2
st+1

)
. (A-39)

A.4 CP Models

Draws from the joint posterior distribution p (st,Ξ,P| Y t) under the CP model are gener-

ated using a very similar set of steps as those used for the MS model. The key difference

is of course the assumption of non-repeated regimes under the CP model. We follow Chib

(1996) and Chib (1998) and rely on a multi-move sampler for the path of hidden states

that is properly modified to deal with the constrained nature of the transition probabil-

ity matrix P. To sample from p (st|Ξ,P,Y t) , we first compute the whole sequence of

filtered probability distributions {p (sτ |Ξ,P,Yτ )}tτ=1, which can be obtained by iterating

through the following two steps recursively for τ = 1, 2, ..., t:

p
(
sτ = l|Ξ,P,Yτ−1

)
=

l∑
k=l−1

p (sτ = l| sτ−1 = k,P) p
(
sτ−1 = k|Ξ,P,Yτ−1

)
(A-40)

for l = 1, ...,M , and

p (sτ = l|Ξ,P,Yτ ) =
p (yτ | sτ = l,Ξ,P,Yτ−1) p (sτ = l|Ξ,P,Yτ−1)∑l

k=l−1 p (yτ | sτ = k,Ξ,P,Yτ−1) p (sτ = k|Ξ,P,Yτ−1)
(A-41)

Specifically, at τ = 1 the filter is started by setting the initial distribution p (s0|P)

to a mass distribution that is concentrated at 1. Next, given the sequence of filtered

probabilities {p (sτ |Ξ,P,Yτ )}tτ=1, we begin by setting st = M. Next, for τ = t − 1, t −
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2, ..., 1 we sample sτ from the conditional distribution p (sτ = l| sτ+1, ..., st,Ξ,P,Y t), given

by

p
(
sτ = l| sτ+1, ..., st,Ξ,P,Y t

)
=

p (sτ+1 = lm| sτ = l,P) p (sτ = l|Ξ,P,Yτ )∑l
k=l−1 p (sτ+1 = lm| sτ = k,P) p (sτ = k|Ξ,P,Yτ )

,

(A-42)

where lm is equal to the state drawn in the previous step of the recursion for sτ+1. The

last of these distributions is degenerate at s1 = 1. For a given sequence of states, the

state-specific parameters θ1, ...,θM , σ
−2
1 , ..., σ−2M are drawn using similar steps as for the

MS model.

To draw the elements of the transition probability matrix P from p (P| st,Ξ,Y t), note

that the diagonal elements of P are independent a posteriori. We draw each of these

separately from a Beta distribution

pii| st,Ξ,Y t ∼ B
(
ap + nii, bp + 1

)
, i = 1, ...,M − 1, (A-43)

where nii = # (sτ−1 = i, sτ = i) counts the numbers of transitions from i to i observed on

the path of hidden states st, and nii+1 = 1 by construction.

Draws from the predictive density p (yt+1| st+1 = M,Y t) are obtained by conditioning

on no breaks between the end of the sample, t, and the end of the forecasting horizon,

t+ 1. These are given by

p
(
yt+1| st+1 = M,Y t

)
=

∫
p
(
yt+1| st+1 = M, st,Ξ,P,Y t

)
× p

(
st,Ξ,P

∣∣Y t) dstdΞdP.
(A-44)

To obtain draws for p (yt+1| Y t), we proceed in two steps:

1. Draw from p (st,Ξ,P| Y t) using the above Gibbs sampling algorithm;

2. Draw from p (yt+1| st+1 = M, st,Ξ,P,Y t) using the distribution

yt+1| st+1 = M, st,Ξ,P,Y t ∼ N
(
µM + β′Mxt, σ

2
M

)
. (A-45)
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