Internet Appendix for "Model Instability and Forecasting Performance"

Davide Pettenuzzo

Allan Timmermann

Brandeis University*

UCSD, CEPR, and CREATES[†]

May 5, 2015

A Posterior derivations

This not-for-publication appendix explains how we obtain parameter estimates for the models described in Section 2 of the paper, and shows how we use these to generate predictive densities.

A.1 Linear models

For the linear models the goal is to obtain draws from the joint posterior distribution $p(\mu, \beta, \sigma_{\varepsilon}^{-2} | \mathcal{Y}^t)$, where \mathcal{Y}^t denotes all information available up to time t. Combining the priors in equations (2)-(4) of the paper with the likelihood function yields the following conditional posteriors:

$$\begin{bmatrix} \mu \\ \boldsymbol{\beta} \end{bmatrix} \sigma_{\varepsilon}^{-2}, \mathcal{Y}^{t} \sim \mathcal{N}\left(\overline{\mathbf{b}}, \overline{\mathbf{V}}\right), \qquad (A-1)$$

and

$$\sigma_{\varepsilon}^{-2} | \mu, \beta, \mathcal{Y}^{t} \sim \mathcal{G}\left(\overline{s}^{-2}, \overline{v}\right), \qquad (A-2)$$

^{*}Brandeis University, Sachar International Center, 415 South St, Waltham, MA, Tel: (781) 736-2834. Email: dpettenu@brandeis.edu.

[†]University of California, San Diego, 9500 Gilman Drive, MC 0553, La Jolla CA 92093. Tel: (858) 534-0894. Email: atimmerm@ucsd.edu.

where

$$\overline{\mathbf{V}} = \left[\underline{\mathbf{V}}^{-1} + \sigma_{\varepsilon}^{-2} \sum_{\tau=1}^{t-1} \mathbf{x}_{\tau} \mathbf{x}_{\tau}' \right]^{-1},$$

$$\overline{\mathbf{b}} = \overline{\mathbf{V}} \left[\underline{\mathbf{V}}^{-1} \underline{\mathbf{b}} + \sigma_{\varepsilon}^{-2} \sum_{\tau=1}^{t-1} \mathbf{x}_{\tau} y_{\tau+1} \right],$$

$$\overline{v} = \underline{v}_{0} (t_{0} - 1) + (t - 1).$$
(A-3)

and

$$\overline{s}^{2} = \frac{\sum_{\tau=1}^{t-1} (y_{\tau+1} - \mu - \beta' \mathbf{x}_{\tau})^{2} + (s_{y,t_{0}}^{2} \times \underline{v}_{0} (t_{0} - 1))}{\overline{v}}.$$
 (A-4)

A Gibbs sampler algorithm can be used to iterate back and forth between (A-1) and (A-2), yielding a series of draws for the parameter vector $(\mu, \beta, \sigma_{\varepsilon}^{-2})$. Draws from the predictive density $p(y_{t+1}|\mathcal{Y}^t)$ can then be obtained by noting that

$$p\left(y_{t+1}|\mathcal{Y}^{t}\right) = \int p\left(y_{t+1}|\mu, \boldsymbol{\beta}, \sigma_{\varepsilon}^{-2}, \mathcal{Y}^{t}\right) p\left(\mu, \boldsymbol{\beta}, \sigma_{\varepsilon}^{-2}|\mathcal{Y}^{t}\right) d\mu d\boldsymbol{\beta} d\sigma_{\varepsilon}^{-2}.$$
 (A-5)

Draws from $p(y_{t+1}|\mathcal{Y}^t)$ are obtained in two steps:

- 1. Draw μ , β , and $\sigma_{\varepsilon}^{-2}$ from $p(\mu, \beta, \sigma_{\varepsilon}^{-2} | \mathcal{Y}^t)$ using the Gibbs sampler described above
- 2. Given μ , β , and $\sigma_{\varepsilon}^{-2}$, draw

$$y_{t+1}|\mu, \beta, \sigma_{\varepsilon}^{-2}, \mathcal{Y}^t \sim \mathcal{N}\left(\mu + \beta' \mathbf{x}_{\tau}, \sigma_{\varepsilon}^2\right)$$
 (A-6)

A.2 Time-varying Parameter, Stochastic Volatility Models

Let $\boldsymbol{\theta}_t$ be the time varying parameters, $\boldsymbol{\theta}_t = (\mu_t, \boldsymbol{\beta}'_t)$, while $\boldsymbol{\theta}^t = \{\boldsymbol{\theta}_1, ..., \boldsymbol{\theta}_t\}$ and $h^t = \{h_1, ..., h_t\}$ are the sequences of time-varying mean and log-volatility parameters up to time t. Finally, let $\Theta = (\mu, \boldsymbol{\beta}, \mathbf{Q}, \sigma_{\xi}^{-2}, \boldsymbol{\gamma}_{\boldsymbol{\theta}}, \lambda_0, \lambda_1)$ be the time-invariant parameters of the TVP-SV model.

To obtain draws from the joint posterior distribution $p(\Theta, \theta^t, h^t | \mathcal{Y}^t)$ for the TVP-SV model, we use the Gibbs sampler to draw recursively from the following conditional distributions:¹

1. $p\left(\boldsymbol{\theta}^{t} \middle| \boldsymbol{\Theta}, h^{t}, \boldsymbol{\mathcal{Y}}^{t}\right)$ 2. $p\left(\mu, \boldsymbol{\beta} \middle| \boldsymbol{\Theta}_{-\mu, \boldsymbol{\beta}}, \boldsymbol{\theta}^{t}, h^{t}, \boldsymbol{\mathcal{Y}}^{t}\right)$ 3. $p\left(\mathbf{Q} \middle| \boldsymbol{\Theta}_{-\mathbf{Q}}, \boldsymbol{\theta}^{t}, h^{t}, \boldsymbol{\mathcal{Y}}^{t}\right)$

¹In standard set notation A_{-b} is the complementary set of b in A, i.e., $A_{-b} = \{x \in A : x \neq b\}$.

4.
$$p(h^t | \Theta, \boldsymbol{\theta}^t, \mathcal{Y}^t)$$

5. $p(\sigma_{\xi}^{-2} | \Theta_{-\sigma_{\xi}^{-2}}, \boldsymbol{\theta}^t, h^t, \mathcal{Y}^t)$
6. $p(\boldsymbol{\gamma}_{\boldsymbol{\theta}} | \Theta_{-\boldsymbol{\gamma}_{\boldsymbol{\theta}}}, \boldsymbol{\theta}^t, h^t, \mathcal{Y}^t)$
7. $p(\lambda_0, \lambda_1 | \Theta_{-\lambda_0, \lambda_1}, \boldsymbol{\theta}^t, h^t, \mathcal{Y}^t)$

We simulate from each of these blocks as follows. Starting with $\boldsymbol{\theta}^t$, we focus on $p(\boldsymbol{\theta}^t | \Theta, h^t, \mathcal{Y}^t)$. First, define $\tilde{y}_{\tau+1} = y_{\tau+1} - \mu - \boldsymbol{\beta}' \mathbf{x}_{\tau}$ and rewrite equation (6) in the paper as follows:

$$\widetilde{y}_{\tau+1} = \mu_{\tau+1} + \beta'_{\tau+1} x_{\tau} + \exp(h_{\tau+1}) u_{\tau+1}.$$
(A-7)

Given a set of values for μ and β , $\tilde{y}_{\tau+1}$ is observable. This reduces (A-7) to the measurement equation of a standard linear Gaussian state space model with heteroskedastic errors. Thus the sequence of time varying parameters θ^t can be drawn from (A-7) using the algorithm of Carter and Kohn (1994).

Second, conditional on $\boldsymbol{\theta}^t$ we can draw $\mu, \boldsymbol{\beta}$ from standard distributions for $p\left(\mu, \boldsymbol{\beta} | \Theta_{-\mu, \boldsymbol{\beta}}, \boldsymbol{\theta}^t, h^t, \mathcal{Y}^t\right)$:

$$\begin{bmatrix} \mu \\ \boldsymbol{\beta} \end{bmatrix} | \Theta_{-\mu,\boldsymbol{\beta}}, \boldsymbol{\theta}^{t}, h^{t}, \mathcal{Y}^{t} \sim N\left(\overline{\mathbf{b}}, \overline{\mathbf{V}}\right), \qquad (A-8)$$

where

$$\overline{\mathbf{V}} = \left[\underline{\mathbf{V}}^{-1} + \sum_{\tau=1}^{t-1} \frac{1}{\exp((h_{\tau+1})^2} \mathbf{x}_{\tau} \mathbf{x}_{\tau}' \right]^{-1},$$

$$\overline{\mathbf{b}} = \overline{\mathbf{V}} \left[\underline{\mathbf{V}}^{-1} \underline{\mathbf{b}} + \sum_{\tau=1}^{t-1} \frac{1}{\exp((h_{\tau+1})^2)} \mathbf{x}_{\tau} \left(y_{\tau+1} - \mu_{\tau+1} - \beta_{\tau+1}' \mathbf{x}_{\tau} \right) \right].$$
(A-9)

Third, note that

$$\mathbf{Q}|\Theta_{-\mathbf{Q}},\theta^{t},h^{t},M_{i}^{\prime},\mathcal{Y}^{t}\sim\mathcal{IW}\left(\overline{\mathbf{Q}},\overline{v}_{\mathbf{Q}}\right),\tag{A-10}$$

where

$$\overline{\mathbf{Q}} = \underline{\mathbf{Q}} + \sum_{\tau=1}^{t-1} \left(\boldsymbol{\theta}_{\tau+1} - \boldsymbol{\gamma}_{\boldsymbol{\theta}}' \boldsymbol{\theta}_{\tau} \right) \left(\boldsymbol{\theta}_{\tau+1} - \boldsymbol{\gamma}_{\boldsymbol{\theta}}' \boldsymbol{\theta}_{\tau} \right)'.$$
(A-11)

and $\overline{v}_{\mathbf{Q}} = (t-1) + \underline{v}_{\mathbf{Q}} (t_0 - 1)$. Fourth, define $y_{\tau+1}^* = y_{\tau+1} - (\mu + \mu_{\tau+1}) - (\boldsymbol{\beta} + \boldsymbol{\beta}_{\tau+1})' \mathbf{x}_{\tau}$ and note that $y_{\tau+1}^*$ is observable conditional on μ , $\boldsymbol{\beta}$, and $\boldsymbol{\theta}^t$. Next, rewrite equation (6) in the paper as

$$y_{\tau+1}^* = \exp(h_{\tau+1}) u_{\tau+1}.$$
 (A-12)

Squaring and taking logs on both sides of (A-12) yields a new state space system that replaces equations (6)-(8) in the paper with

$$y_{\tau+1}^{**} = 2h_{\tau+1} + u_{\tau+1}^{**}, \qquad (A-13)$$

$$h_{\tau+1} = \lambda_0 + \lambda_1 h_\tau + \xi_{\tau+1}, \qquad (A-14)$$

where $y_{\tau+1}^{**} = \ln\left[\left(y_{\tau+1}^*\right)^2\right]$, and $u_{\tau+1}^{**} = \ln\left(u_{\tau+1}^2\right) \sim \ln\left(\chi_1^2\right)$, with u_{τ}^{**} independent of ξ_s for all τ and s. Kim et al. (1998) employ a data augmentation approach and introduce a new state variable s_{τ} , $\tau = 1, ..., t$, turning their focus on drawing from $p\left(h^t | \Theta, \theta^t, s^t, \mathcal{Y}^t\right)$ instead of $p\left(h^t | \Theta, \theta^t, \mathcal{Y}^t\right)$.² Conditional on the additional state variable s_{τ} , the linear non-Gaussian state space representation in (A-13)-(A-14) can be written as an approximate linear Gaussian state space model:

$$u_{\tau+1}^{**} \approx \sum_{j=1}^{7} q_j \mathcal{N} \left(m_j - 1.2704, v_j^2 \right),$$
 (A-15)

where m_j , v_j^2 , and q_j , j = 1, 2, ..., 7, are constants specified in Kim et al. (1998). In turn, (A-15) implies

$$u_{\tau+1}^{**} | s_{\tau+1} = j \sim \mathcal{N} \left(m_j - 1.2704, v_j^2 \right), \qquad (A-16)$$

where $q_j = \Pr(s_{\tau+1} = j)$ is the probability of state j.

Conditional on s^t , we can rewrite the nonlinear state space system as follows:

$$y_{\tau+1}^{**} = 2h_{\tau+1} + e_{\tau+1},$$

$$h_{\tau+1} = \lambda_0 + \lambda_1 h_{\tau} + \xi_{\tau+1},$$
(A-17)

where $e_{\tau+1} \sim N(m_j - 1.2704, v_j^2)$ with probability q_j . We can use the algorithm of Carter and Kohn (1994) to draw the whole sequence of stochastic volatilities, h^t , for this linear Gaussian state space system.

Conditional on the sequence h^t , draws of states s^t can easily be obtained, noting that each of its elements can be independently drawn from the discrete density defined by

$$\Pr\left(s_{\tau+1} = j \mid y_{\tau+1}^{**}, h_{\tau+1}\right) = \frac{q_j f_{\mathcal{N}}\left(y_{\tau+1}^{**} \mid 2h_{\tau+1} + m_j - 1.2704, v_j^2\right)}{\sum_{l=1}^7 q_l f_{\mathcal{N}}\left(y_{\tau+1}^{**} \mid 2h_{\tau+1} + m_l - 1.2704, v_l^2\right)}.$$
 (A-18)

for $\tau = 1, ..., t - 1$ and j = 1, ..., 7, and where $f_{\mathcal{N}}$ denotes the kernel of a normal density. Fifth, the posterior distribution for $p\left(\sigma_{\xi}^{-2} | \Theta_{-\sigma_{\xi}^{-2}}, \boldsymbol{\theta}^{t}, h^{t}, \mathcal{Y}^{t}\right)$ takes the form

$$\sigma_{\xi}^{-2} | \Theta_{-\sigma_{\xi}^{-2}}, \boldsymbol{\theta}^{t}, h^{t}, \mathcal{Y}^{t} \sim \mathcal{G} \left(\left[\frac{\sum_{\tau=1}^{t-1} (h_{\tau+1} - \lambda_{0} - \lambda_{1} h_{\tau})^{2} + \underline{k}_{\xi} \underline{v}_{\xi} (t-1)}{(t-1) + \underline{v}_{\xi} (t_{0} - 1)} \right]^{-1}, (t-1) + \underline{v}_{\xi} (t_{0} - 1) \right)$$
(A-19)

²Here $s^t = \{s_1, s_2, ..., s_t\}$ denotes the history up to time t of the new state variable s.

Sixth, obtaining draws from $p(\boldsymbol{\gamma}_{\boldsymbol{\theta}}| \Theta_{-\boldsymbol{\gamma}_{\boldsymbol{\theta}}}, \boldsymbol{\theta}^{t}, h^{t}, \mathcal{Y}^{t})$ and $p(\lambda_{0}, \lambda_{1}| \Theta_{-\lambda_{0},\lambda_{1}}, \boldsymbol{\theta}^{t}, h^{t}, \mathcal{Y}^{t})$ is straightforward. As for $p(\boldsymbol{\gamma}_{\boldsymbol{\theta}}| \Theta_{-\boldsymbol{\gamma}_{\boldsymbol{\theta}}}, \boldsymbol{\theta}^{t}, h^{t}, \mathcal{Y}^{t})$, we separately draw each of its elements. The *i*-th element $\gamma_{\boldsymbol{\theta}}^{i}$ is drawn from the following distribution

$$\gamma_{\boldsymbol{\theta}}^{i} | \Theta_{-\boldsymbol{\gamma}_{\boldsymbol{\theta}}}, \boldsymbol{\theta}^{t}, h^{t}, \mathcal{Y}^{t} \sim \mathcal{N}\left(\overline{m}_{\boldsymbol{\gamma}_{\boldsymbol{\theta}}}^{i}, \overline{V}_{\boldsymbol{\gamma}_{\boldsymbol{\theta}}}^{i}\right) \times \gamma_{\boldsymbol{\theta}}^{i} \in (-1, 1)$$
(A-20)

where

$$\overline{V}_{\gamma_{\theta}}^{i} = \left[\underline{V}_{\gamma_{\theta}}^{-1} + \mathbf{Q}^{ii} \sum_{\tau=1}^{t-1} \left(\theta_{\tau}^{i} \right)^{2} \right]^{-1},$$

$$\overline{m}_{\gamma_{\theta}}^{i} = \overline{V}_{\gamma_{\theta}}^{i} \left[\underline{V}_{\gamma_{\theta}}^{-1} \underline{m}_{\gamma_{\theta}} + \mathbf{Q}^{ii} \sum_{\tau=1}^{t-1} \theta_{\tau}^{i} \theta_{\tau+1}^{i} \right], \qquad (A-21)$$

and \mathbf{Q}^{ii} is the *i*-th diagonal element of \mathbf{Q}^{-1} .

Finally, the distribution $p(\lambda_0, \lambda_1 | \Theta_{-\lambda_0, \lambda_1}, \boldsymbol{\theta}^t, h^t, \mathcal{Y}^t)$ takes the form

$$\lambda_0, \lambda_1 | \Theta_{-\lambda_0, \lambda_1}, \boldsymbol{\theta}^t, h^t, \mathcal{Y}^t \sim \mathcal{N}\left(\left[\begin{array}{c} \overline{m}_{\lambda_0} \\ \overline{m}_{\lambda_1} \end{array}\right], \overline{\mathbf{V}}_{\lambda}\right) \times \lambda_1 \in (-1, 1),$$

where

$$\overline{\mathbf{V}}_{\lambda} = \left\{ \begin{bmatrix} \underline{V}_{\lambda_0}^{-1} & 0\\ 0 & \underline{V}_{\lambda_1}^{-1} \end{bmatrix} + \sigma_{\xi}^{-2} \sum_{\tau=1}^{t-1} \begin{bmatrix} 1\\ h_{\tau} \end{bmatrix} [1, h_{\tau}] \right\}^{-1},$$
(A-22)

and

$$\begin{bmatrix} \overline{m}_{\lambda_0} \\ \overline{m}_{\lambda_1} \end{bmatrix} = \overline{\mathbf{V}}_{\lambda} \left\{ \begin{bmatrix} \underline{V}_{\lambda_0}^{-1} & 0 \\ 0 & \underline{V}_{\lambda_1}^{-1} \end{bmatrix} \begin{bmatrix} \underline{m}_{\lambda_0} \\ \underline{m}_{\lambda_1} \end{bmatrix} + \sigma_{\xi}^{-2} \sum_{\tau=1}^{t-1} \begin{bmatrix} 1 \\ h_{\tau} \end{bmatrix} h_{\tau+1} \right\}.$$
 (A-23)

Using these results, draws from the predictive density $p(y_{t+1}|\mathcal{Y}^t)$ can be obtained by noting than

$$p(y_{t+1}|\mathcal{Y}^{t}) = \int p(y_{t+1}|\boldsymbol{\theta}_{t+1}, h_{t+1}, \Theta, \boldsymbol{\theta}^{t}, h^{t}, \mathcal{Y}^{t}) \times p(\boldsymbol{\theta}_{t+1}, h_{t+1}|\Theta, \boldsymbol{\theta}^{t}, h^{t}, \mathcal{Y}^{t}) A-24)$$
$$\times p(\Theta, \boldsymbol{\theta}^{t}, h^{t}|\mathcal{Y}^{t}) d\Theta d\boldsymbol{\theta}^{t+1} dh^{t+1}.$$

Draws from $p(y_{t+1}|\mathcal{Y}^t)$ are obtained in three steps:

- 1. Draw from $p(\Theta, \theta^t, h^t | \mathcal{Y}^t)$ using the above Gibbs sampling algorithm;
- 2. Simulate the future volatility, h_{t+1} , and the future regression coefficients, θ_{t+1} from the distributions

$$h_{t+1}|\Theta, \boldsymbol{\theta}^t, h^t, \mathcal{Y}^t \sim \mathcal{N}\left(\lambda_0 + \lambda_1 h_t, \sigma_{\xi}^2\right).$$
(A-25)

and

$$\boldsymbol{\theta}_{t+1} | \Theta, \boldsymbol{\theta}^t, h^t, \mathcal{Y}^t \sim \mathcal{N} \left(\boldsymbol{\gamma}_{\boldsymbol{\theta}}' \boldsymbol{\theta}_t, \mathbf{Q} \right).$$
 (A-26)

3. Finally, given $\boldsymbol{\theta}_{t+1}, h_{t+1}, \Theta, \mathcal{Y}^t$ draw

$$y_{t+1} | \boldsymbol{\theta}_{t+1}, h_{t+1}, \Theta, \boldsymbol{\theta}^{t}, h^{t}, \mathcal{Y}^{t} \sim \mathcal{N} \left((\mu + \mu_{t+1}) + \left(\boldsymbol{\beta} + \boldsymbol{\beta}_{t+1} \right)^{\prime} \mathbf{x}_{t}, \exp\left(h_{t+1}\right) \right).$$
(A-27)

A.3 MS Models

To obtain draws from the joint posterior distribution $p(s^t, \Xi, \mathbf{P} | \mathcal{Y}^t)$ under the MS model, we use the Gibbs sampler to draw recursively from the following three conditional distributions:

- 1. $p(s^t | \Xi, \mathbf{P}, \mathcal{Y}^t)$
- 2. $p(\Xi|s^t, \mathbf{P}, \mathcal{Y}^t)$
- 3. $p(\mathbf{P}|s^t, \Xi, \mathcal{Y}^t)$

We simulate from each of these blocks as follows. We follow Chib (1996) and rely on a multi-move sampler for the path of hidden states, s^t . We first rewrite $p(s^t | \Xi, \mathbf{P}, \mathcal{Y}^t)$ as

$$p\left(s^{t} \middle| \Xi, \mathbf{P}, \mathcal{Y}^{t}\right) = \left[\prod_{\tau=1}^{t-1} p\left(s_{\tau} \middle| s_{\tau+1}, ..., s_{t}, \Xi, \mathbf{P}, \mathcal{Y}^{t}\right)\right] p\left(s_{t} \middle| \Xi, \mathbf{P}, \mathcal{Y}^{t}\right).$$
(A-28)

 $p(s_t | \Xi, \mathbf{P}, \mathcal{Y}^t)$ is the filtered probability distribution at $\tau = t$. Chib (1996) shows that

$$p\left(s_{\tau}|s_{\tau+1},...,s_{t},\Xi,\mathbf{P},\mathcal{Y}^{t}\right) \propto p\left(s_{\tau+1}|s_{\tau},\mathbf{P}\right) \times p\left(s_{\tau}|\Xi,\mathbf{P},\mathcal{Y}^{\tau}\right), \qquad (A-29)$$

where $p(s_{\tau} | \Xi, \mathbf{P}, \mathcal{Y}^{\tau})$ is the filtered probability distribution at τ , and $p(s_{\tau+1} | s_{\tau}, \mathbf{P})$ is the transition probability from the Markov chain. Thus, to sample from $p(s^t | \Xi, \mathbf{P}, \mathcal{Y}^t)$, we first need to compute the sequence of filtered probability distributions $\{p(s_{\tau} | \Xi, \mathbf{P}, \mathcal{Y}^{\tau})\}_{\tau=1}^{t}$, which can be obtained by recursively iterating through the following two steps for $\tau = 1, 2, ..., t$:

$$p(s_{\tau} = l | \Xi, \mathbf{P}, \mathcal{Y}^{\tau-1}) = \sum_{k=1}^{K} p(s_{\tau} = l | s_{\tau-1} = k, \mathbf{P}) p(s_{\tau-1} = k | \Xi, \mathbf{P}, \mathcal{Y}^{\tau-1}), \quad (A-30)$$

and, for l = 1, ..., K,

$$p(s_{\tau} = l | \Xi, \mathbf{P}, \mathcal{Y}^{\tau}) = \frac{p(y_{\tau} | s_{\tau} = l, \Xi, \mathbf{P}, \mathcal{Y}^{\tau-1}) p(s_{\tau} = l | \Xi, \mathbf{P}, \mathcal{Y}^{\tau-1})}{\sum_{k=1}^{K} p(y_{\tau} | s_{\tau} = k, \Xi, \mathbf{P}, \mathcal{Y}^{\tau-1}) p(s_{\tau} = k | \Xi, \mathbf{P}, \mathcal{Y}^{\tau-1})}.$$
 (A-31)

At $\tau = 1$ the filter is started with the initial distribution $p(s_0 | \mathbf{P})$, which we set equal to the steady state probabilities. Once the sequence of filtered probabilities $\{p(s_\tau | \Xi, \mathbf{P}, \mathcal{Y}^\tau)\}_{\tau=1}^t$

is available, we proceed as follows. First, we sample s_t from the filtered state probability distribution $p(s_t | \Xi, \mathbf{P}, \mathcal{Y}^t)$. Next, for $\tau = t - 1, t - 2, ..., 1$ we sample s_{τ} from the conditional distribution $p(s_{\tau} = l | s_{\tau+1}, ..., s_t, \Xi, \mathbf{P}, \mathcal{Y}^t)$

$$p\left(s_{\tau} = l | s_{\tau+1}, ..., s_{t}, \Xi, \mathbf{P}, \mathcal{Y}^{t}\right) = \frac{p\left(s_{\tau+1} = l_{m} | s_{\tau} = l, \mathbf{P}\right) p\left(s_{\tau} = l | \Xi, \mathbf{P}, \mathcal{Y}^{\tau}\right)}{\sum_{k=1}^{K} p\left(s_{\tau+1} = l_{m} | s_{\tau} = k, \mathbf{P}\right) p\left(s_{\tau} = k | \Xi, \mathbf{P}, \mathcal{Y}^{\tau}\right)}$$
(A-32)

where l_m is the state drawn in the previous step of the recursion for $s_{\tau+1}$. Note that for each $\tau = t - 1, t - 2, ..., 1, p(s_{\tau} = l | s_{\tau+1}, ..., s_t, \Xi, \mathbf{P}, \mathcal{Y}^t)$ needs to be evaluated for all l = 1, ..., K.

The state-specific parameters $\boldsymbol{\theta}_1, ..., \boldsymbol{\theta}_K, \sigma_1^{-2}, ..., \sigma_K^{-2}$ are independent a posteriori and are drawn from the following distributions

$$\boldsymbol{\theta}_{i} | \sigma_{i}^{-2}, s^{t}, \mathbf{P}, \mathcal{Y}^{t} \sim \mathcal{N}\left(\overline{\mathbf{b}}_{i}, \overline{\mathbf{V}}_{i}\right),$$
(A-33)

and

$$\sigma_i^{-2} \left| \boldsymbol{\theta}_i, s^t, \mathbf{P}, \mathcal{Y}^t \sim \mathcal{G}\left(\overline{s}_i^{-2}, \overline{v}_i\right),$$
(A-34)

where

$$\overline{\mathbf{V}}_{i} = \left[\underline{\mathbf{V}}^{-1} + \sigma_{i}^{-2} \sum_{\tau:s_{\tau}=i} \mathbf{x}_{\tau} \mathbf{x}_{\tau}' \right]^{-1},$$

$$\overline{\mathbf{b}}_{i} = \overline{\mathbf{V}}_{i} \left[\underline{\mathbf{V}}^{-1} \underline{\mathbf{b}} + \sigma_{i}^{-2} \sum_{\tau:s_{\tau}=i} \mathbf{x}_{\tau} y_{\tau+1} \right],$$
(A-35)

and

$$\overline{v}_{i} = \underline{v}_{0} + n_{i},$$

$$\overline{s}_{i}^{2} = \frac{\sum_{\tau:s_{\tau}=i} (y_{\tau+1} - \mu_{i} - \boldsymbol{\beta}_{i}' \mathbf{x}_{\tau})^{2} + (s_{y,t_{0}}^{2} \times \underline{v}_{0} n_{i})}{\overline{v}_{i}},$$
(A-36)

where $n_i = \# (s_\tau = i)$ counts the number of observations from regime *i* along the path of hidden states s^t . To cope with the label switching problem that arises with Markov switching models, we identify different regimes by imposing the following constraint on the regime-specific volatilities: $\sigma_1^2 < \sigma_2^2 < ... < \sigma_K^2$.

Next, we draw the elements of the transition probability matrix \mathbf{P} from $p(\mathbf{P}|s^t, \Xi, \mathcal{Y}^t)$. Because the rows $\mathbf{p}_{i,.}$ of \mathbf{P} are independent a posteriori, we draw each row separately from the following Dirichlet distribution:

$$\mathbf{p}_{i,.}|s^t, \Xi, \mathcal{Y}^t \sim \mathcal{D}\left(e_{i1} + n_{i1}, ..., e_{iK} + n_{iK}\right), \quad i = 1, ..., K$$
 (A-37)

where $n_{ij} = \# (s_{\tau-1} = i, s_{\tau} = j)$ counts the numbers of transitions from *i* to *j* as given by the whole path of hidden states s^t .

Finally, draws from the predictive density $p(y_{t+1}|\mathcal{Y}^t)$ can be obtained by noting than

$$p(y_{t+1}|\mathcal{Y}^{t}) = \int p(y_{t+1}|s_{t+1}, s^{t}, \Xi, \mathbf{P}, \mathcal{Y}^{t}) \times p(s_{t+1}|s^{t}, \Xi, \mathbf{P}, \mathcal{Y}^{t}) \quad (A-38)$$
$$\times p(s^{t}, \Xi, \mathbf{P}|\mathcal{Y}^{t}) ds^{t+1} d\Xi d\mathbf{P}.$$

To draw from $p(y_{t+1}|\mathcal{Y}^t)$, we proceed in three steps:

- 1. Draw from $p(s^t, \Xi, \mathbf{P} | \mathcal{Y}^t)$ using the above Gibbs sampling algorithm;
- 2. Simulate the time t+1 hidden state variable, s_{t+1} by drawing from $p(s_{t+1}|s^t, \Xi, \mathbf{P}, \mathcal{Y}^t)$. Note that $p(s_{t+1}|s^t, \Xi, \mathbf{P}, \mathcal{Y}^t)$ equals the j-th row of \mathbf{P} , $\mathbf{p}_{j,.}$, if $s_t = j$;
- 3. Draw from $p(y_{t+1}|s_{t+1}, s^t, \Xi, \mathbf{P}, \mathcal{Y}^t)$ using the distribution

$$y_{t+1}|s_{t+1}, s^t, \boldsymbol{\Xi}, \mathbf{P}, \mathcal{Y}^t \sim \mathcal{N}\left(\mu_{s_{t+1}} + \boldsymbol{\beta}_{s_{t+1}}' \mathbf{x}_t, \sigma_{s_{t+1}}^2\right).$$
(A-39)

A.4 CP Models

Draws from the joint posterior distribution $p(s^t, \Xi, \mathbf{P} | \mathcal{Y}^t)$ under the CP model are generated using a very similar set of steps as those used for the MS model. The key difference is of course the assumption of non-repeated regimes under the CP model. We follow Chib (1996) and Chib (1998) and rely on a multi-move sampler for the path of hidden states that is properly modified to deal with the constrained nature of the transition probability matrix **P**. To sample from $p(s^t | \Xi, \mathbf{P}, \mathcal{Y}^t)$, we first compute the whole sequence of filtered probability distributions $\{p(s_\tau | \Xi, \mathbf{P}, \mathcal{Y}^\tau)\}_{\tau=1}^t$, which can be obtained by iterating through the following two steps recursively for $\tau = 1, 2, ..., t$:

$$p(s_{\tau} = l | \Xi, \mathbf{P}, \mathcal{Y}^{\tau-1}) = \sum_{k=l-1}^{l} p(s_{\tau} = l | s_{\tau-1} = k, \mathbf{P}) p(s_{\tau-1} = k | \Xi, \mathbf{P}, \mathcal{Y}^{\tau-1}) \quad (A-40)$$

for l = 1, ..., M, and

$$p(s_{\tau} = l | \Xi, \mathbf{P}, \mathcal{Y}^{\tau}) = \frac{p(y_{\tau} | s_{\tau} = l, \Xi, \mathbf{P}, \mathcal{Y}^{\tau-1}) p(s_{\tau} = l | \Xi, \mathbf{P}, \mathcal{Y}^{\tau-1})}{\sum_{k=l-1}^{l} p(y_{\tau} | s_{\tau} = k, \Xi, \mathbf{P}, \mathcal{Y}^{\tau-1}) p(s_{\tau} = k | \Xi, \mathbf{P}, \mathcal{Y}^{\tau-1})}$$
(A-41)

Specifically, at $\tau = 1$ the filter is started by setting the initial distribution $p(s_0 | \mathbf{P})$ to a mass distribution that is concentrated at 1. Next, given the sequence of filtered probabilities $\{p(s_\tau | \Xi, \mathbf{P}, \mathcal{Y}^\tau)\}_{\tau=1}^t$, we begin by setting $s_t = M$. Next, for $\tau = t - 1, t -$

2, ..., 1 we sample s_{τ} from the conditional distribution $p(s_{\tau} = l | s_{\tau+1}, ..., s_t, \Xi, \mathbf{P}, \mathcal{Y}^t)$, given by

$$p(s_{\tau} = l | s_{\tau+1}, ..., s_t, \Xi, \mathbf{P}, \mathcal{Y}^t) = \frac{p(s_{\tau+1} = l_m | s_{\tau} = l, \mathbf{P}) p(s_{\tau} = l | \Xi, \mathbf{P}, \mathcal{Y}^{\tau})}{\sum_{k=l-1}^{l} p(s_{\tau+1} = l_m | s_{\tau} = k, \mathbf{P}) p(s_{\tau} = k | \Xi, \mathbf{P}, \mathcal{Y}^{\tau})},$$
(A-42)

where l_m is equal to the state drawn in the previous step of the recursion for $s_{\tau+1}$. The last of these distributions is degenerate at $s_1 = 1$. For a given sequence of states, the state-specific parameters $\boldsymbol{\theta}_1, ..., \boldsymbol{\theta}_M, \sigma_1^{-2}, ..., \sigma_M^{-2}$ are drawn using similar steps as for the MS model.

To draw the elements of the transition probability matrix \mathbf{P} from $p(\mathbf{P}|s^t, \Xi, \mathcal{Y}^t)$, note that the diagonal elements of \mathbf{P} are independent a posteriori. We draw each of these separately from a Beta distribution

$$p_{ii}|s^t, \Xi, \mathcal{Y}^t \sim \mathcal{B}\left(\underline{a}_p + n_{ii}, \underline{b}_p + 1\right), \quad i = 1, ..., M - 1,$$
(A-43)

where $n_{ii} = \# (s_{\tau-1} = i, s_{\tau} = i)$ counts the numbers of transitions from *i* to *i* observed on the path of hidden states s^t , and $n_{ii+1} = 1$ by construction.

Draws from the predictive density $p(y_{t+1}|s_{t+1} = M, \mathcal{Y}^t)$ are obtained by conditioning on no breaks between the end of the sample, t, and the end of the forecasting horizon, t+1. These are given by

$$p\left(y_{t+1}|s_{t+1}=M,\mathcal{Y}^{t}\right) = \int p\left(y_{t+1}|s_{t+1}=M,s^{t},\Xi,\mathbf{P},\mathcal{Y}^{t}\right) \times p\left(s^{t},\Xi,\mathbf{P}|\mathcal{Y}^{t}\right) ds^{t} d\Xi d\mathbf{P}.$$
(A-44)

To obtain draws for $p(y_{t+1}|\mathcal{Y}^t)$, we proceed in two steps:

- 1. Draw from $p(s^t, \Xi, \mathbf{P} | \mathcal{Y}^t)$ using the above Gibbs sampling algorithm;
- 2. Draw from $p(y_{t+1}|s_{t+1} = M, s^t, \Xi, \mathbf{P}, \mathcal{Y}^t)$ using the distribution

$$y_{t+1}|s_{t+1} = M, s^t, \boldsymbol{\Xi}, \mathbf{P}, \mathcal{Y}^t \sim \mathcal{N}\left(\mu_M + \boldsymbol{\beta}'_M \mathbf{x}_t, \sigma_M^2\right).$$
(A-45)

References

- Carter, C. K. and R. Kohn (1994). On gibbs sampling for state space models. Biometrika 81(3), pp. 541–553.
- Chib, S. (1996). Calculating posterior distributions and modal estimates in markov mixture models. Journal of Econometrics 75(1), 79 - 97.
- Chib, S. (1998). Estimation and comparison of multiple change-point models. *Journal of Econometrics* 86(2), 221 – 241.
- Kim, S., N. Shephard, and S. Chib (1998). Stochastic volatility: Likelihood inference and comparison with arch models. *The Review of Economic Studies* 65(3), 361–393.