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A Prior and posterior simulations
A.1 Linear models

The individual linear models regress stock returns, measured in excess of a risk-free rate, 7,1,

on a constant and a lagged predictor variable, x,:

rro1 = p+pBrrter, T=1,..,t—1, (A-1)
Er41 N(0,0’g)

A.1.1 Priors

Following standard practice, the priors for the parameters p and § in (A-1) are assumed to be

normal and independent of 03,1

vy, (4-2)

with the hyperparameters b and V calibrated over the initial twenty years of data, January
1927 to December 1946.2 In particular, we set all the elements of b to zero, except for the
term corresponding to p, which is set to 7, the average excess return calculated over the initial
training sample. As for the elements of V, we use a g-prior (see Zellner (1986))

-1

—1
V=y|s, (Z xwi) , (A-3)
T=1

where s%y; denotes the standard deviation of excess returns, calculated over the initial training
sample, and ¢ = 240. Note that our choice of the prior mean vector b reflects the “no pre-
dictability” view that the best predictor of stock excess returns is the average of past returns.
We therefore center the prior intercept on the prevailing mean of historical excess returns, while
the prior slope coefficient is centered on zero. In (A-3), ¢ is a constant that controls the tightness
of the prior, with 1) — oo corresponding to a diffuse prior on p and 3. Our benchmark analysis
sets ¥ = 1.

We assume a standard gamma prior for the error precision of the return innovation, o

02~ G (57w (E - 1)) (A-4)

2.

where v, is a prior hyperparameter that controls the degree of informativeness of this prior, with

vy — 0 corresponding to a diffuse prior on o 2. Our baseline analysis sets v, = 1.3

!See for example Koop (2003), Section 4.2.

2The approach of calibrating some of the prior hyperparameters using statistics computed over an initial
training sample is quite standard in the Bayesian literature; see, e.g., Primiceri (2005), Clark (2011), Clark and
Ravazzolo (2015), and Banbura et al. (2010).

3Following Koop (2003), we adopt the Gamma distribution parametrization of Poirier (1995). Namely, if the
continuous random variable Y has a Gamma distribution with mean g > 0 and degrees of freedom v > 0, we
write Y ~ G (p1,v) . In this case, E(Y) = p and Var (Y) = 2u*/v.



A.1.2 Posterior simulation

For the linear models the goal is to obtain draws from the joint posterior distribution p ( W, B,0- 2‘ M;, Dt),
where D! denotes all information available up to time ¢, and M; denotes model i, with ¢ = 1, .., N.

Combining the priors in (A-2)-(A-4) with the likelihood function yields the following conditional

posteriors:
[ : ] 0=, M, D' ~ N (B, V), (A-5)
and
0% u, B, M;, D' ~ G (57,7), (A-6)
where
t—1 -1
vV = |v! —i—JE_QZ:L'Tx;] ,
T=1
t—1
B = V [V_lb + 05_2 Z xT’rT—i-l] ) (A_7)
T=1
T o= v (t—1)+(t—-1).
and i )
2 _ Dot (Prp1 — = Bz7)” + (372;; X v (L — 1)) (A-8)
= .

A Gibbs sampler algorithm can be used to iterate back and forth between (A-5) and (A-6),
yielding a series of draws for the parameter vector (u,,@,ae_ 2). Draws from the predictive

density p (rt+1] M;, Dt) can then be obtained by noting that
p (ree1| M;, DY) = /p (rega| B, 022, M;, DY) p (w, B, 02 %| M;, DY) dpdpBdo . (A-9)

A.2 Time-varying Parameter, Stochastic Volatility Models

The time-varying parameter, stochastic volatility (TVP-SV) model allows both the regression

coefficients and the return volatility to change over time:

Tr41 = (/L + MT+1) + (/B+BT+1> Tr +exp (hT+1) Ur+1, T = 17 ot — 17 (A—lO)

where h,11 denotes the (log of) stock return volatility at time 7 + 1, and u,4+1 ~ N (0,1). We
assume that the time-varying parameters 6,1 = (ttr41,5r11)" follow a zero-mean, stationary

process

0T+1 = ’7,007’ Mgty Mrg1 ™ N (07 Q) s (A'll)



where #; = 0 and the elements in 7,4 are restricted to lie between —1 and 1.* The log-volatility

h:41 is also assumed to follow a stationary and mean reverting process:
hri1 = Ao+ Ahr + i1, &1 ~ N (0,0%) (A-12)
where [A;| <1 and u,, n; and & are mutually independent for all 7, ¢, and s.

A.2.1 Priors

Our choice of priors for (i, 3) are the same as those in (A-2). The TVP-SV model in (A-10)-(A-
12) also requires eliciting priors for the sequence of time-varying parameters, 8° = {05, ...,0;}
the variance covariance matrix Q, the sequence of log return volatilities, h' = {h1, ..., hs}, the
error precision o¢ 2 and the parameters Yo, Mo, and A;. Using the decomposition p (Ht, Yo, Q) =
p (6" 79, Q) p(v9) (Q), we note that (A-11) along with the assumption that 6; = 0 implies

t—1

p(6'176.Q) = [[ »(6:11175,6:. Q) , (A-13)
=1
with 0-41|7vg,0-,Q ~ N (756-,Q), for 7 = 1,...,t — 1. To complete the prior elicitation for
D (Bt, Yo, Q) , we specify priors for Q and g as follows. As for @, we choose an Inverted Wishart
distribution

Q~IW(Q.t-2), (A-14)

with
1

t—1
Q=ko(t—2) (s, <Z wwi) : (A-15)
T=1

The constant k, controls the degree of variation in the time-varying regression coefficients 6,
where larger values of kg imply greater variation in 0..°> We set kg = 0.01 to limit the extent
to which the parameters can change over time. We specify the elements of 4 to be a priori

independent of each other with generic element %iq
Yo~ N (m,,V..)., v€(-1,1), i=172 (A-16)

where m,, = 0.95, and V| = 1.0e75, implying high autocorrelations.

4Note that this is equivalent to writing rr41 = Hry1 + ETHxT + exp (hr41) Ur4+1, where (ﬁl,Bl) is left
unrestricted.

51n this way, the scale of the Wishart distribution for Q is specified to be a fraction of the OLS estimates of the
variance covariance matrix sf,ﬁ (Zf;ll acT:cfr) -t , multiplied by the degrees of freedom, ¢t — 2, since for the inverted-
Wishart distribution the scale matrix has the interpretation of the sum of squared residuals. This approach is
consistent with the literature on TVP-VAR models; see, e.g., Primiceri (2005).



Next, consider the sequence of log-volatilities, h?, the error precision, o¢ 2 and the param-

eters A\g and A;. Decomposing the joint probability of these parameters p (ht,)\o, )\1705_2> =
D (ht‘ A0, A1, 052) p (Ao, A1) D ((752) and using (A-12), we have

t—1
p (hf| o, Al,agQ) - J;[lp (h7+1| Aoy Al hT,ag2> p(h), (A-17)

h’r+1|)\0;)\17h770§_2 ~ N(A0+A1h7,a§).

To complete the prior elicitation for p (ht, Ao, /\1%_ 2) , we choose priors for Ay, A1, the initial

log volatility hy, and o¢ 2 from the normal-gamma family:

iy~ N (I (51) ) (A1)
lew([m ) [ % L)) e @
h UE_Q ~ G (1/ke,1). (A-20)

We set ke, = 0.01 and choose the remaining hyperparameters in (A-18) and (A-19) to imply
uninformative priors, allowing the data to determine the degree of time variation in the return
volatility. Specifically, we set k;, = 0.01, my = 0, and V, = 10. As for the hyperparameters
controlling the degree of mean reversion in h., we set m,, = 0.95, and V, = 1.0e79, which

imply a high autocorrelation in h,1.

A.2.2 Posterior simulation

Let s' = {s1, 52, ..., 5t} be the history up to time ¢ of the states for the mixture distribution used
to approximate the x? distribution under the Kim et al. (1998) algorithm. Also, to simplify the
notation, let us group all the time invariant parameters of the TVP-SV model into the matrix
©, where © — (M,B,Q,'ye,agQ,)\o,)q).

To obtain draws from the joint posterior distribution p (G), 0, ht‘ M/, Dt) under the TVP-
SV model, we use the Gibbs sampler to draw recursively from the following eight conditional

distributions:®

1. p(6'|®,h', M, D).
2. p (:uaB| ®—M,ﬁ79t7ht>Mi/’Dt) .

3.p (Q‘ ®7Qa et’ htv M7,,7Dt)

6Using standard set notation, we define A_; as the complementary set of b in A, i.e. A_y = {z € A: x # b}.



4. p(s'©,6' ht, M/, D).

5. p(h'|©,6" 5", M/, D).
6. p
7. p (Vg ©®—n,, 0", ht, M/, D)

(
(
(o7 }@ 2,6, 1, M[, D)
(
(

8. P )\0,/\1’@ )\0)\1,9 ht M{,'Dt)

We simulate from each of these blocks as follows. Starting with 8%, we focus on p (Ot’ O,ht, M}, Dt) .

Define 7741 = rr41 — p — Bx, and rewrite (A-10) as follows:

Tr41 = fr — Br¥r + €xp (h’r—H) Ur41 (A‘21)

Note that knowledge of i and 8 makes r-41 observable, and reduces (A-10) to the measurement
equation of a standard linear Gaussian state space model with heteroskedastic errors. Thus
the sequence of time varying parameters 8" can be drawn from (A-21) using, for example, the
algorithm of Carter and Kohn (1994).

Moving on to p (,u, Bl ©_, 8 6!, ht, M, Dt) , conditional on @ it is straightforward to draw
u, 3, by applying standard results. Specifically,

ottt N .9), (A-22)
where
t—1 1 -1
V - X_l + -’I;ng— ’
Z 1 €Xp (hT+1)2 ]
b = Vb + Z % (Tr g1 — Y — BTJUT)] , (A-23)
exp hri1)

As for p (Q| ©_gq, 0", ht, M/, D") , we have that
Q|©_qg,0" ', M, D' ~IW (Q,t+t—3), (A-24)

where

Q=Q+) (611 —7p07) (0-11 —7p0-)". (A-25)
T=1

Moving on to the vector of states p (st‘ 0.0! ht, M! ,Dt) and the time varying volatilities
P (ht| ©,0',s', M/, D"), we follow Primiceri (2005) and employ the algorithm of Kim et al.



(1998).7 Define 5.1 = Try1 — (W + pry1) — (B + Bry1) - and note that 77, is observable
conditional on p, 3, and 8'. Next, rewrite (A-10) as

7741 = exp (hri1) Urtr. (A-26)

Squaring and taking logs on both sides of (A-26) yields a new state space system that replaces
(A-10)-(A-12) with

*k

Tr41 = 2h7’+1 =+ uij—lv (A'27)
hT-|—1 = )\0 + )\lh’r + €T+17 (A'28)

where 77 = In [(7‘;54_1)2}, and uX; = In (u? ), with u** independent of & for all 7 and s.
Since u¥* ; ~ In (x}), we cannot resort to standard Kalman recursions and simulation algorithms
such as those in Carter and Kohn (1994) or Durbin and Koopman (2002). To obviate this
problem, Kim et al. (1998) employ a data augmentation approach and introduce a new state
variable s;y1, 7 = 1,..,t—1, turning their focus on drawing from p (ht‘ 0,6 s, M/, Dt) instead
of p (ht’ ©,60', M/, D") . The introduction of the state variable s;41 allows us to rewrite the
linear non-Gaussian state space representation in (A-27)-(A-28) as a linear Gaussian state space

model, making use of the following approximation,
7
ulty &> N (my — 1.2704,07) (A-29)
j=1

where m;, v?, and ¢j, j = 1,2,...,7, are constants specified in Kim et al. (1998) and thus need

not be estimated. In turn, (A-29) implies
W] srp1 =7 ~ N (mj —1.2704,07) (A-30)

where each state has probability
Pr (5741 = J) = 45 (A-31)
Draws for the sequence of states s* can easily be obtained, noting that each of its elements can
be independently drawn from the discrete density defined by
Pr (3r+1 _j|©.6'nt, M,L-’,Dt) _ ij/\/ (Tiil‘ 2hry1 +mj — 1.2704,11]2-) | (A-3)
S afn (rE| 2hesr + my — 1.2704,07)

forr=1,..,t—1and j =1,...,7, and where fnr denotes the kernel of a normal density. Next,
¢

conditional on s, we can rewrite the nonlinear state space system as follows:

*k

rya1 = 2hry1 + erqa,
hTJrl = )\0 + )\1h7' + £T+17 (A‘33)

"However, we modify the algorithm of Primiceri (2005) to reflect the correction to the ordering of steps detailed
in Del Negro and Primiceri (2014).




where e,41 ~ N (mj — 1.2704,1)]2) with probability Pr (s,+1 = j| ©, 6", ht, M/, D'). For this
linear Gaussian state space system, we can use the algorithm of Carter and Kohn (1994) to
draw the whole sequence of stochastic volatilities, h.

Next, the posterior distribution for p (ag2’ w, 3,0%, Q,ht, \o, M1, Y, M/, Dt) is readily avail-

able as,

(A-34)

-1
ke + 55 (hraq — Mo — Mhy)?
0¢*| O 2,040 M, D ~ G ke + 271 (hrn = do = i) ¢

t

Finally, obtaining draws from p (79| O_,,, 0", ht, M, Dt) and p ()\0, A Oy, 0, R, M, Dt)
is straightforward. As for p (73| 0 _,,, 0t ht, M/, Dt) , we separately draw each of its elements.

The i—th element 7} is drawn from the following distribution

Y6 © . 040D ~ N (1, V2, ) X 7 € (<1,1) (A-35)
where ¢ = 1,2 and
. t—1 , -1
I/t -1 i I
7= et e
T=1
m, = Vo, |V m,+Q"> 6 ;4 , (A-36)
=1

and Q¥ is the i—th diagonal element of Q1. As for p (/\0, A1l ('-),,\07,\1,0’5, ht, M{,Dt) , we have
that

Aos M| © _x, 0y, 0 0, M D ~ NV ([ Zii } ,VA) x A1 € (—1,1)
where
_ vil o iy | B
V)= {[3 v ] roty ] [LhT]} (A-37)
and

m Vit 0 m it 1
Ao . e —Xo Ao -2 _
[m)\l} V)\{|: 0 Vxll] [m)\l ]+U£ 7;1|:h7—:|h7—+1}. (A-38)
Finally, draws from the predictive density p (rtH] M, Dt) can be obtained by noting than

p(rt—i-l’Mi/?Dt) = /p(Tt-l—l’0t+17ht+17@70t7ht7Mi/7Dt)
Xp (0t+17ht+1| @,et,ht,MiI,'Dt) (A—39)
xp(©,0',h'| M], D) d®de" ™ dn'*!.

To obtain draws for p (Tt+1| M, Dt), we proceed in three steps:



1. Draws from p (@, 0, ht‘ M/, Dt) are obtained from the Gibbs sampling algorithm described

above;

2. Draws from p (0t+1, hiy1| ©, 0!, ht, M, Dt): having processed data up to time t, the next
step is to simulate the future volatility, hs11, and the future parameters, 8;,1. We have
that

hi1]©,0", b, M], D' ~ N (Ao + Aihe, 0F) . (A-40)

and
ot-‘rl‘@votvhtaMi’aDt NN(VIBOtaQ) . (A_41)

3. Draws from p (7¢41] 0441, he1,©, 0% b, M/, D"): we have that

Teg1| Qi1 hug1, ©,0° B, M D ~ N (1 + peg1) + (B + Bigt) o, exp (hegr)) . (A-42)

B Sequential combination

In this section, we summarize the prior elicitation and the posterior simulation for the density
combination algorithm proposed in Billio et al. (2013), which we extend with a learning mecha-

nism based on the past economic performance of the individual models entering the combination.

B.1 Priors

First, we need to specify priors for o2 and for the diagonal elements of A. The prior for o2,

the precision of our measure of incompleteness in the combination scheme, and the diagonal
elements of A™!, the precision matrix of the process z;;; governing the combination weights
w41, are assumed to be gamma, G(s,2 v, (t — 1)) and G(sx',ua(t — 1)), respectively. We
set informative values on our prior beliefs regarding the incompleteness and the combination
weights. Precisely, we set v, = v, = 1 and set the hyperparameters controlling the means
of the prior distributions to §;3 = 1000, shrinking the model incompleteness to zero, and to
§Xl = 4, allowing z;11 to evolve freely over time and differ from the initial value zg, set to equal

weights.®

B.2 Posterior simulation

Let ¢ be the parameter vector of the combination model, that is ¢ = (02, A). Assume that
T, 7 = 1,...,t + 1 is computed using formulas from either the linear or TVP-SV models

given in the previous section (recall that ¥, = (71 -, ..., ?Nﬁ)' is the N x 1 vector of predictions

8In our empirical application, N is set to 15 therefore zo; = In(1/15) = —2.71 resulting in wo; = 1/15. The
prior choices we made for the diagonal elements of A allow the posterior weights on the individual models to differ
substantially from equal weights.



made at time 7, and p (FT| DTﬁl) is its joint predictive density); define the vector of observable
rig = (r1,... ,rt), € D! the augmented state vector Z; 1 = (Wyt1,Z¢+1,St41), where 6441 = G,

Vt. We write the model combination in its state space form as

e o~ p(rre, Zy) (measurement density) (B-1)
Z, ~ p(Zy|Zi_1,r1.4,1¢) (transition density) (B-2)
Zy ~ p(Zy) (initial density) (B-3)

The state predictive and filtering densities, which provide the posterior densities of the

combination weights, are

P(Zig1lr14,T1) = /p(zt+1|ztarl:taFl:t)p(zt|r1:t7F1:t)dZt (B-4)

~ P(re1] L1, Top1)D( L1 |T1:e, T1ee)
P(Zig1|T141, T1i041) = — B-5
( o | = o ) p(TtH\I'l:t,I'l:t) ( )

and the marginal predictive density of the observable variables is then

p(re41lr1:e) :/p("’t—i-l|r1:t7Ft+1)p(Ft+1rl:t)arf't-i-l

where p(riy1|rie, Ti1) is defined as

/p(Tt+1|Zt+1,Ft+1)p(Zt+1 |r1:4,T1:)dZg 41

and represents the conditional predictive density of the observable given the predictors and the
past values of the observable.

The analytical solution of the optimal combination problem is generally not known. We
use M parallel conditional SMC filters, where each filter, is conditioned on the predictor vector
sequence T, 7 = 1,...,t + 1.

We initialize independently the M particle sets: Eé = {Zf)’j ,wé’j lNzl, J=1,...,M. Each

particle set Eg contains N iid random variables Zé’j with random weights wé’j . We initialize
the set of predictors, by generating iid samples Y‘{, j=1,...,M, from p(ri|rg) where rq is
an initial set of observations for the variable of interest. Then, at the iteration ¢ + 1 of the
combination algorithm, we approximate the predictive density p(ryyi|ri) with M iid samples

from the predictive densities, and ¢, (y) denotes the Dirac mass at z.

Precisely, we assume an independent sequence of particle sets Ei = {Zil’i,wz’j ﬁil, j =
1,..., M, is available at time ¢ and that each particle set provides the approximation
pw,j(Be|r1e, T, = ZWZ’]%J (z¢) (B-6)
i=1

of the filtering density, p(Zt]ylzt,F{:t), conditional on the j-th predictor realization, ?{:t. The

prediction (including the weights wy41) are computed using the state predictive p(Zi41|r1:4, T1:¢)-

10



After collecting the results from the different particle sets, it is possible to obtain the following

empirical predictive density for the stock returns

M N
1 y
PMN(Tey1lr1) = MN Z szdfsrgﬁl(rtﬂ) (B-7)
j=1i=1

At the next observation, M independent conditional SMC algorithms are used to find a new
sequence of M particle sets, which include the information available from the new observation

and the new predictors.

C Robustness analysis

In this section we summarize the results of several robustness checks on the main results for
the S&P500 index. First, we investigate the effect on the profitability analysis presented in
sections 5.2 and 6 of altering the investor’s relative risk aversion coefficient A. Next, we conduct
a subsample analysis to shed light on the robustness of the results to the choice of the forecasting
evaluation period. We next investigate the implications of altering the parameter A controlling
the degree of learning in the model combination weights. After that, we explore the sensitivity
of the results to the particular choice we made with respect to the investor’s preferences, by
replacing the investor’s power utility with a mean variance utility. Finally, we conduct an

extensive prior sensitivity to ascertain the role of our baseline prior choices on the overall results.

C.1 Sensitivity to risk aversion

The economic predictability analysis we reported in sections 5.2 and 6 assumed a coefficient
of relative risk aversion A = 5. To explore the sensitivity of our results to this value, we also
consider lower (A = 2) and higher (A = 10) values of this parameter. Results based on the
prevaling mean (PM) benchmark are shown in Table C.2, while Table C.3 presents results based
on the alternative PM benchmark with stochastic volatility, PM-SV.

Starting with Table C.2, we begin with the case A = 2, i.e., lower risk aversion compared
to the baseline case. Under this scenario, the CER-~based DeCo scheme generates CERDs that
are above 200 basis points for both the linear and TVP-SV cases. No other model combination
method comes close to these values, even though, relative to the baseline case of A =5, we see
on average an increase in all model combinations’ CERDs. As for the individual models, an
interesting pattern emerges. Relative to the baseline case of A = 5, we find that when lowering
the risk aversion to A = 2, the average CERD of the linear models decreases from -0.17% (A = 5)
t0 -0.40% (A = 2); in contrast, for the TVP-SV models we see that the average CERD increases
from 0.79% (A = 5) to 1.13% (A = 2). Thus, lowering the risk aversion coefficient from A =5
to A = 2 has the effect of boosting the economic performance of the individual TVP-SV models,
while decreasing the CERD of the linear models.

11



We next consider the case with A = 10. In this case we find an overall decrease in CERD
values, both for the individual models and the model combinations. However, the CER-based
DeCo combination scheme continues to dominate all the other specifications. This is true for
both the linear and the TVP-SV models. In particular, the CERD for the CER-based DeCo
combination scheme averaging across the TVP-SV models is still quite large, at 126 basis points.

Moving on to the PM-SV benchmark, a quick comparison between Table C.2 and Table C.3
reveals that switching benchmark from the PM to the PM-SV model produces a marked decrease
in economic predictability, both for the individual models and the various model combinations.
This comparison shows the important role of volatility timing, something that can be directly
inferred by comparing the TVP-SV results across the two tables. Most notably, the CER-based
DeCo results remain quite strong even after replacing the benchmark model, especially for the
case of TVP-SV models. In particular, when A = 2 the CER-based DeCo CERD under the
TVP-SV models is as high as 116 basis points, while when A = 10 it reaches 85 basis points.

C.2 Subsample analysis

We next consider the robustness of our results to the choice of the forecast evaluation period.
Columns two to five of Table C.4 show CERD results separately for recession and expansion
periods, as defined by the NBER indicator. This type of analysis has been proposed by authors
such as Rapach et al. (2010) and Henkel et al. (2011). When focusing on the linear models
(columns two and four), we find higher economic predictability in recessions than in expansions.
This results is consistent with the findings in these studies. For the TVP-SV models (column
three and five), the story is however different. There we find the largest economic gains during
expansions. This holds true both for the individual models and the various model combinations.
This finding is somewhat surprising, since we would expect time-varying models to help when
entering recessions; on the other hand, stochastic volatility might reduce the return volatility
during long expansionary periods, having important consequences in the resulting asset alloca-
tions. Clark and Ravazzolo (2015) document a similar pattern in forecasting macroeconomic
variables. Interestingly, the CER-based DeCo scheme continue to provide positive and large
economic gains in both expansions and recessions, and for both linear and TVP-SV models.

The last four columns of Table C.4 show CERD results separately for two out-of-sample
periods, 1947-1978 and 1979-2010. Welch and Goyal (2008) argue that the predictive ability
of many predictor variables deteriorates markedly after the 1973-1975 oil shock, so we are par-
ticularly interested in whether the same holds true here. The results of Table C.4 are overall
consistent with this pattern, as we observe smaller gains during the second subsample, both
for the individual models and the various model combinations. However, the CER-based DeCo
CERDs are still fairly large, as high as 87 basis points in the case of linear models, and as high
as 167 basis points in the TVP-SV case.

12



C.3 Sensitivity to the learning dynamics

When specifying the learning mechanism for the CER-based DeCo in equations (7)-(9), we
introduced the smoothing parameter A, where A € (0,1). Our main analysis of the economic
value of equity premium forecasts in Sections 5.2 and 6 relied on A = 0.95, which implies a
monotonically decreasing impact of past forecast performance in the determination of the model
combination weights. Several studies, such as Stock and Watson (1996) and Stock and Watson
(2004) support such value. A larger or smaller discount factor is, however, possible and we
investigate the sensitivity of our results to using A = 0.9.” Table C.5 reports the results of
this sensitivity analysis where, to ease the comparison with the benchmark results based on
A = 0.95, we reproduce those as well. We explore the impact of altering the value of the
smoothing parameter A by investigating the economic impact of such choice across different risk
aversion coefficients (A = 2, 5, 10) and across four different subsamples (NBER expansions and
recessions, 1947-1978, and 1979-2010). Overall we find very similar results along all dimensions,
with CER-based DeCo models based on A = 0.95 generating, on average, slightly higher CERDs.

C.4 Mean variance utility preferences

As a robustness to the particular choice of the utility function for our investor, we consider
replacing the power utility function with mean variance preferences. Under mean variance

preferences, at time 7 — 1 the investor’s utility function takes the form
A
U(W;.)=E[W;,| D] - 5 Var (Wi | D] (C-1)
with W; » denoting the investor’s wealth at time 7 implied by model M;,

Wir=(1—wijr—1)exp (rﬁfl) + Wi r—1 €xp (Tf_ll + ’I“T) (C-2)
Next, it can be shown that the optimal allocation weights w;_; are given by the solution of

~ o2

exp (ui,f + {) -1

Aexp (7"7}_:1) exp <2ﬁm + ?f\zT) (exp (8%) - 1) .

where j1; » and 827 are shorthands for the mean and variance of p (7“7—| M;, DTﬁl) , the predictive

*

Wir—1=

(C-3)

density of r, under model M;. It is important to note that altering the utility function of the in-
vestor will have repercussions not only on the profitability of the individual models M, ..., My,
but also on the overall statistical and economic predictability of the CER-based DeCo combina-

tion scheme. In fact, as we have discussed in subsection 3.2, the combination weight conditional

9As for the case of a larger discount factor, note that when A = 1 equation (8) implies that the CER-based
DeCo scheme simplifies to the Density Combination scheme we investigated earlier, where the combination weights
no longer depend on the past performance of the individual models entering the combination.
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density at time 7, p(w,|D" 1), depends on the history of profitability of the individual models
M; to My through equations (7)—(9).
Note next that in the case of a mean variance investor, time 7 CER is simply equal to the

investor’s realized utility W , hence equation (9) is replaced by
f (TTv 771‘,7) =U (W;:T) ’ (0'4)

where W denotes time 7 realized wealth, and is given by

Wir=(1—w, )exp <T7Jf—l> + Wiy g exp (Tz—l + 7’7) : (C-5)

Having computed the optimal allocation weights for both the individual models M; to My
and the various model combinations, we assess the economic predictability of all such models
by computing their implied (annualized) CER, which in the case of mean variance preferences

is computed simply as the average of all realized utilities over the out-of-sample period,

t
1
CERp=12x— > U (W) (C-6)
T=t+1
where m denotes the model under consideration (either univariate or model combination), and
t* =t —t. Table C.6 presents differential certainty equivalent return estimates, relative to the

benchmark prevailing mean model PM,
CERD,, = CER,, — CERp)n (C-7)

whereby a positive entry can be interpreted as evidence that model m generates a higher (cer-
tainty equivalent) return than the benchmark model. A quick comparison between Table 2 in
the paper and Table C.6 reveals that the economic gains for power utility and mean variance
utility are quite similar in magnitude, and the overall takeaways from sections 5.2 and 6 remain
unchanged. In particular, the CER-based DeCo combination scheme generates sizable CERDs,
especially when combining TVP-SV models. For the benchmark case of A = 5, the CERD
is as high as 220 basis points. Altering the risk aversion coefficients produces CERDs for the
CER-based DeCo model ranging from 115 basis points (A = 10) to 436 basis points (A = 2).

C.5 Sensitivity to priors

As a final sensitivity, we test the robustness of our results to alternative prior assumptions
and perform a sensitivity analysis in which we experiment with different values for some of
the key prior hyperparameters. Given the more computational demanding algorithm required

to estimate the TVP-SV models, we focus our attention on the linear models, and investigate
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the effectiveness of the CER-~based DeCo combination scheme as the key prior hyperparameters

change.

Lin (7) controlling

First, we investigate the impact of changing the prior hyperparameter s,
the degree of time variation in the CER-based DeCo combination weights, which was set to
§Xl = 4 in our baseline results. As sensitivities, we experiment with §K1 = 0.2 and §K1 =
1000, which imply more volatile combination weights (in the case of §Xl = 0.2), or smoother
combination weights (in the case of s,* = 1000). In the former case, the annualized CERD of
the CER-based DeCo combination scheme decreases to 0.80%, only a marginal reduction from
its baseline 0.94%. Hence, it appears that having more volatile combination weights does not
hinder the overall performance of CER-based DeCo. On the other hand, setting §X1 = 1000
yields a much larger reduction in the CER-based DeCo CERD, which decreases to 0.27%. It thus
appears that too large a value for §K1 produces combination weights that are far too smooth,

affecting the economic performance of CER-based DeCo.'"

Next, we study the impact of changing the prior hyperparameters ¢ and v,. As discussed in
Subsection 4.2, the hyperparameter 1 plays the role of a scaling factor controlling the informa-
tiveness of the priors for p and 3, and our baseline results are based on 1) = 1. As sensitivities,
we experiment with ¢ = 10 and ¢ = 0.01, which imply more dispersed prior distributions (in
the case of 1) = 10) or more concentrated prior distributions (in the case of ¢ = 0.01) for x and

2 and our

B. Similarly, the prior hyperparameter v, controls the tightness of the prior on o
baseline results are based on v, = 1, which correspond to an hypothetical prior sample size of
20 years. As sensitivities, we experiment with vy = 0.1 and v, = 100, which imply, respectively,
an hypothetical prior sample of two years (in the case of vy = 0.1) or as large as 2,000 years (in
the case of vy, = 100). Table C.7 summarizes the relative economic performances of both the
individual linear models and the various combination schemes under these two alternative prior
choices, over the whole forecast evaluation period, 1947-2010. A comparison with Table 2 in the
paper reveals that relying on more dispersed prior distributions (the case of ¢ = 10, vy = 0.1)
has only minor consequences on the overall results. In particular, the economic performance of
the CER-based DeCo combination scheme remains unaffected by the prior change. As for the
more concentrated prior distributions (the case of 1) = 0.01, vy = 100), we witness an overall
reduction in the economic performance of both the individual models and the various combina-
tion schemes. This should be expected, as we remind that our priors are centered on the “no
predictability” view, and as a result more concentrated priors will tend to tilt more heavily the

individual models in that direction. Interestingly, the CER-based DeCo combination scheme

10We also investigate the sensitivity of our baseline results to the choice of §;3, the prior hyperparameter
controlling the degree of model incompleteness, and find that the performance of CER-based DeCo deteriorates
when its value is too small, with combination weights shrinking to equal weights. On the other hand, we find
that when the value of §;3 is too large the estimation algorithm seems to converge very slowly.
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still performs quite adequately, with an annualized CERD of 48 basis points.

D Additional results

In this section, we present a number of supplementary tables and charts, including results for a
shorter evaluation sample ending in 2007 before the onset of the latest recession, and a graphical

summary of the time dynamics of the CER-based DeCo combination weights.

Table D.1 and Table D.2 are the analog of tables 1 and 2 in the paper for the shorter
evaluation sample ending in December 2007, before the onset of the latest recession. Table D.1
presents the results on the statistical predictability of the individual models as well as the
various model combination schemes, while Table D.2 reports their annualized CERD, relative

to the prevailing mean benchmark.

Finally, Figure D.1 displays the posterior means of the CER-based DeCo combination weights
for the top linear models (top panel) and TVP-SV models (bottom panel) over the whole eval-
uation period, January 1947 to December 2010.
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Table C.1. Summary Statistics

Variables Mean Std. dev. Skewness Kurthosis
Excess returns 0.005 0.056 -0.405 10.603
Log dividend yield -3.324 0.450 -0.435 3.030
Log earning price ratio -2.720 0.426 -0.708 5.659
Log smooth earning price ratio -2.912 0.376 -0.002 3.559
Log dividend-payout ratio -0.609 0.325 1.616 9.452
Book-to-market ratio 0.589 0.267 0.671 4.456
T-Bill rate 0.037 0.031 1.025 4.246
Long-term yield 0.053 0.028 0.991 3.407
Long-term return 0.005 0.024 0.618 8.259
Term spread 0.016 0.013 -0.218 3.128
Default yield spread 0.011 0.007 2.382 11.049
Default return spread 0.000 0.013 -0.302 11.490
Stock variance 0.003 0.005 5.875 48.302
Net equity expansion 0.019 0.024 1.468 10.638
Inflation 0.002 0.005 -0.069 6.535
Log total net payout yield -2.137 0.224 -1.268 6.213

This table reports summary statistics for monthly excess returns, computed as returns on the S&P500 portfolio
minus the T-bill rate, and for the predictor variables used in this study. The sample period is January 1927 -
December 2010.
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Table C.2. Effect of risk aversion on economic performance measures

A=2 A=10
Linear TVP-SV Linear TVP-SV
Individual models

Log dividend yield -098 % 1.10 % -0.16 %  0.46 %
Log earning price ratio 0.12 % 1.51 % 0.13 % 0.59 %
Log smooth earning price ratio -1.36 %  1.19 % -0.19 %  0.47 %
Log dividend-payout ratio 099 % 1.07 % 021 % 0.46 %
Book-to-market ratio -1.37 %  1.30 % -0.28% 0.31 %
T-Bill rate -0.66 % 1.32 % -0.13%  0.43 %
Long-term yield -0.86 % 0.74 % 017%  0.27 %
Long-term return -0.81 % 0.86 % -0.19% 0.38 %
Term spread 0.47 % 1.68 % 0.06 % 0.42 %
Default yield spread -049% 110 % -0.10% 0.45 %
Default return spread -0.06 % 1.15 % -0.09% 0.32 %
Stock variance 0.02% 1.31 % 0.02% 0.52%
Net equity expansion 0.54 % 1.16 % -0.08 %  0.41 %
Inflation -041% 0.88 % -0.07 %  0.40 %
Log total net payout yield -1.07%  0.48 % -0.18 % 0.23 %

Model Combinations
Equal weighted combination 0.06 % 1.20 % 0.02% 0.55 %

BMA -0.09% 1.28% -0.02% 0.52 %
Optimal prediction pool -1.02%  1.28 % 041 %  0.51 %
CER-based linear pool 0.04% 1.44 % 0.01 % 0.56 %
DeCo 0.00 % 1.83 % 0.01 % 0.90 %
CER-based DeCo 2.63 % 2.33 % 0.50 % 1.26 %

This table reports the certainty equivalent return differentials (CERD) for portfolio decisions based on recursive
out-of-sample forecasts of monthly excess returns. Each period an investor with power utility and coefficient of
relative risk aversion of two (columns two and three) or ten (columns four and five) selects stocks and T-bills based
on different predictive densities, precisely the combination schemes and individual prediction models for monthly
excess returns. The models “CER-based linear pool” and “CER-based DeCo” refer to the case with A matching
the values in the headings (A = 2, 10) and, in the case of “CER-based DeCo”, A = 0.95. The columns “Linear”
refer to predictive return distributions based on a linear regression of monthly excess returns on an intercept
and a lagged predictor variable, x,;: 741 = u + Bxr + €r41, and combination of these N linear individual
models; the columns “T'VP-SV” refer to predictive return distributions based on a time-varying parameter and
stochastic volatility regression of monthly excess returns on an intercept and a lagged predictor variable, z,:
rr41 = (W + pr41) + (B+Br41) - + exp (hr41) ur41, and combination of these N time-varying parameter and
stochastic volatility individual models. CERD are annualized and are measured relative to the prevailing mean
model which assumes a constant equity premium. Bold figures indicate all instances in which the CERD is greater

than zero. All results are based on the whole forecast evaluation period, January 1947 - December 2010.
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Table C.3. Effect of risk aversion on economic performance measures and alternative benchmark

A=2 A=10
Linear TVP-SV Linear TVP-SV
Individual models
Log dividend yield 216 % -0.07 % -0.57 % 0.05 %
Log earning price ratio -1.06 %  0.34 % -0.29 %  0.18 %
Log smooth earning price ratio -2.54 %  0.02 % -0.60 %  0.06 %
Log dividend-payout ratio -018%  -0.10 % -021%  0.05 %
Book-to-market ratio -255 %  0.13 % -0.69 %  -0.10 %
T-Bill rate -1.84 % 015 % -054% 0.01 %
Long-term yield -2.03%  -0.44 % -0.58 %  -0.15 %
Long-term return -199%  -031% -0.61 %  -0.03 %
Term spread -0.70 % 0.50 % -0.35 %  0.01 %
Default yield spread -1.66 % -0.07 % -0.51 %  0.04 %
Default return spread -1.24 %  -0.03 % -0.50 % -0.10 %
Stock variance -1.16 % 0.14 % -0.40 %  0.11 %
Net equity expansion -0.64 %  -0.02 % -0.49 %  -0.01 %
Inflation -1.58 % -0.29 % -0.48 % -0.01 %
Log total net payout yield -225%  -0.69 % -0.60 % -0.18 %
Model Combinations

Equal weighted combination -1.12 %  0.03 % -0.40 %  0.14 %
BMA -1.27 % 0.11 % -043 %  0.11 %
Optimal prediction pool -220% 0.11 % -0.82 % 0.10 %
CER-based linear pool 113 % 0.27 % -0.40 %  0.15 %
DeCo -1.18 %  0.65 % -0.41 %  0.49 %
CER-based DeCo 1.46 % 1.16 % 0.09% 0.85%

This table reports the certainty equivalent return differentials (CERD) for portfolio decisions based on recursive
out-of-sample forecasts of monthly excess returns. Each period an investor with power utility and coefficient of
relative risk aversion of two (columns two and three) or ten (columns four and five) selects stocks and T-bills based
on different predictive densities, precisely the combination schemes and individual prediction models for monthly
excess returns. The models “CER-based linear pool” and “CER-based DeCo” refer to the case with A matching
the values in the headings (A = 2, 10) and, in the case of “CER-based DeCo”, A = 0.95. The columns “Linear”
refer to predictive return distributions based on a linear regression of monthly excess returns on an intercept
and a lagged predictor variable, x,: 741 = u + Bxr + €-41, and combination of these N linear individual
models; the columns “T'VP-SV” refer to predictive return distributions based on a time-varying parameter and
stochastic volatility regression of monthly excess returns on an intercept and a lagged predictor variable, z,:
rr41 = (W + pirg1) + (B+B-41) - + exp (hr41) ur41, and combination of these N time-varying parameter and
stochastic volatility individual models. CERD are annualized and are measured relative to the prevailing mean
model with stochastic volatility which assumes a constant equity premium. Bold figures indicate all instances in
which the CERD is greater than zero. All results are based on the whole forecast evaluation period, January 1947
- December 2010.
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Table C.7. Prior sensitivity analysis: economic performance

Y =10,y =0.1 ¢ =0.01, vy =100
Individual models

Log dividend yield -0.25 % -0.19 %
Log earning price ratio 0.27 % 0.08 %
Log smooth earning price ratio -0.29 % -0.16 %
Log dividend-payout ratio 0.30 % 0.06 %
Book-to-market ratio -0.70 % -0.26 %
T-Bill rate -0.16 % -0.19 %
Long-term yield -0.24 % -0.15 %
Long-term return -0.06 % -0.31 %
Term spread 0.33 % -0.23 %
Default yield spread 0.00 % -0.11 %
Default return spread 0.01 % -0.03 %
Stock variance 0.27 % 0.00 %
Net equity expansion -0.02 % -0.03 %
Inflation -0.01 % -0.12 %
Log total net payout yield -0.23 % -0.23 %
Model Combinations
Equal weighted combination 0.16 % -0.08 %
BMA 0.17 % -0.06 %
Optimal prediction pool -0.56 % -0.07 %
CER-based linear pool 0.18 % -0.04 %
DeCo -0.06 % 0.00 %
CER-based DeCo 0.74 % 0.48 %

This table reports the certainty equivalent return differentials (CERD) for portfolio decisions based on recursive
out-of-sample forecasts of monthly excess returns. Each period an investor with power utility and coefficient
of relative risk aversion A = 5 selects stocks and T-bills based on different predictive densities, precisely the
combination schemes and individual prediction models for monthly excess returns. refer to the case with A =5
and, in the case of “CER-based DeCo”, A = 0.95. Predictive return distributions are based on a linear regression
of monthly excess returns on an intercept and a lagged predictor variable, x.: rr41 = p + Bxr + €+41, and
combination of these N linear individual models for two different set of priors. The prior set with ¢» = 10 and
v, = 0.1 refers to a diffuse prior assumption and ¢ = 10 and v, = 0.1 to an informative prior assumption. CERD
are annualized and are measured relative to the prevailing mean model which assumes a constant equity premium.
Bold figures indicate all instances in which the CERD is greater than zero. All results are based on the whole

forecast evaluation period, January 1947 - December 2010.
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Table D.2. Economic performance of portfolios based on out-of-sample return forecasts, 1947-

2007
Individual models

Predictor Panel A: vs. PM Panel B: vs. PM-SV

Linear TVP-SV Linear TVP-SV
Log dividend yield -042 % 0.88 % -1.40 % -0.09 %
Log earning price ratio 010% 112 % -0.87 % 0.15 %
Log smooth earning price ratio | -0.55 %  0.92 % -1.53 % -0.05 %
Log dividend-payout ratio 049 % 111 % -0.48 % 0.14 %
Book-to-market ratio -0.70 %  0.70 % -1.67 % -0.27 %
T-Bill rate 024 % 1.04 % -1.22 % 0.07 %
Long-term yield -0.32 %  0.59 % -1.30 % -0.38 %
Long-term return -0.47 % 0.87 % -1.44 % -0.10 %
Term spread 0.20 % 1.03 % -0.77 % 0.06 %
Default yield spread -0.18 %  1.05 % -1.15 % 0.08 %
Default return spread -0.10 %  0.71 % -1.07 % -0.26 %
Stock variance -0.10% 1.05 % -1.07 % 0.08 %
Net equity expansion 0.56 % 1.36 % -0.41 % 0.38 %
Inflation -0.15% 1.00 % -1.12 % 0.03 %
Log total net payout yield -0.26 %  0.70 % -1.23 % -0.27 %

Model Combinations

Equal weighted combination 0.03% 1.23 % -0.94 % 0.26 %
BMA -0.02% 1.23 % -0.99 % 0.26 %
Optimal prediction pool -0.38 %  1.04 % -1.36 % 0.07 %
CER-based linear pool -0.02% 1.24 % -0.99 % 0.27 %
DeCo 0.02 % 1.90 % -0.95 % 0.93 %
CER-based DeCo 095 % 2.58% -0.02 % 1.61 %

This table reports the annualized certainty equivalent return differentials (CERD) for portfolio decisions based on recursive
out-of-sample forecasts of excess returns. Each period an investor with power utility and coefficient of relative risk aversion
A = 5 selects stocks and T-bills based on a different predictive density, based either on a combination scheme or on an
individual prediction model of the monthly excess returns. The columns “Linear” refers to predictive return distributions
based on a linear regression of monthly excess returns on an intercept and a lagged predictor variable, z,: rr41 =
w+ Bxr + er41, and combination of these IV linear individual models; the columns “TVP-SV” refer to predictive return
distributions based on a time-varying parameter and stochastic volatility regression of monthly excess returns on an intercept
and a lagged predictor variable, zr: 7r41 = (L + pr41) + (B+Br+1) + + exp (hr41) ur+1, and combination of these N
TVP-SV individual models. The models “CER-based linear pool” and “CER-based DeCo” refer to the case with A = 5
and, in the case of “CER-based DeCo”, A = 0.95. Panel A reports CERD that are measured relative to the prevailing mean
(PM) benchmark, while panel B presents CERD that are computed relative to the prevailing mean model with stochastic
volatility (PM-SV) benchmark. Bold figures indicate all instances in which the CERD is greater than zero. All results are

based on an evaluation period that extends from January 1947 to December 2007.
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Figure D.1. Predictor weights for the CER~based DeCo combination scheme
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This figure plots the posterior means of the CER-based DeCo weights for the top individual linear models (top
panel) and TVP-SV models (bottom panel) over the out-of-sample period. The individual predictors showed are
Log(DP): log dividend price ratio, Log(DY): log dividend yield, Log(EP): log earning price ratio, Log(Smooth
EP): log smooth earning price ratio, Log(DE): log dividend-payout ratio, BM: book-to-market ratio, TBL: T-Bill
rate, LTY: long-term yield, LTR: long-term return, TMS: term spread, DFY: default yield spread, DFR: default
return spread, SVAR: stock variance, NTIS: net equity expansion, INFL: inflation, and Log(NPY): log total net
payout yield. The out of sample period starts in January 1947 and ends in December 2010.
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